资料图:美国纽约曼哈顿14街一处新冠病毒检测站为居民做检测。中新社记者 廖攀 摄
XBB.1.5毒株将“横扫”美国?
XBB为新冠病毒奥密克戎BA.2衍生的2个变异株BJ.1和BM.1.1.1的重组毒株。XBB.1.5是XBB衍生的子分支。
英国《独立报》援引全球流感共享数据库(GISAID)的统计数据显示,已有至少74个国家和地区发现XBB.1.5,包括美国、英国、印度、巴基斯坦等。其中,美国有43个州检测到该毒株。
美国有线电视新闻网(CNN)称,2022年秋天,XBB曾在新加坡掀起了一波疫情浪潮。而今,XBB.1.5可能正在美国推动新一波的疫情浪潮。
美国疾病控制和预防中心(CDC)预计,与其它毒株相比,XBB.1.5每周的新冠病毒感染占比大幅增加,其中2022年12月的新感染病例占比从约4%升至41%。CDC还预计,在该国东北部,XBB.1.5导致了约75%的新病例。
华盛顿大学医学院病毒学实验室的新冠病毒测序主任罗伊乔杜里(Pavitra Roychoudhury)说:“几个月来,我们还没有看见过以这种速度传播的变体。”
西雅图福瑞德·哈金森癌症研究中心的计算生物学教授贝德福德(Trevor Bedford)也表示,“预计它会在未来几周推动传播增长。”
他指出,这种增长可能不会反映在病例数上,因为越来越多的人选择在家中进行检测。“因此,我希望将弱势年龄组(如老年人)的住院情况视为更合适的(疫情)浪潮指标。”
两大特性或助推XBB.1.5传播
美国有线电视新闻网(CNN)指出,XBB.1.5之所以可能会推动新的疫情传播,与其两大特性有关。
一是其极为“狡猾”的免疫逃逸能力。
哥伦比亚大学微生物学和免疫学教授何大一最近在实验室进行了病毒测试,这些病毒被设计成具有XBB和XBB.1以及BQ.1和BQ 1.1的尖峰,以对抗不同类型的受试者血液中的抗体,包括感染病毒的群体,接种了原始株和二价疫苗的群体,以及既感染病毒又接种疫苗的群体。其团队还测试了23种针对这些新亚系的单克隆抗体疗法。
研究发现,XBB.1是其中“最狡猾的”。它被感染者和接种疫苗者血液中的抗体中和的可能性比BA.2低63倍,比BA.4和BA.5低49倍。此外,就免疫逃逸性而言,这些变体已“远离”人类制造的用于对抗它们的抗体。
何大一称,其免疫逃逸水平“令人担忧”,并表示这可能会进一步损害新冠疫苗的功效。XBB.1.5 在抗体逃逸方面与 XBB.1 相同,这意味着它有可能逃脱疫苗接种和过去感染所带来的保护。它还能抵抗所有当前的抗体治疗。
除高度免疫逃逸能力外,XBB.1.5另一可能有助于传播的“技能”在于——该毒株在486位点有一个关键突变,这使得它可以更紧密地与 ACE2 结合。ACE2相当于病毒用来进入人体细胞的“大门”。
弗雷德哈钦森癌症中心的计算病毒学家杰西布鲁姆(Jesse Bloom)表示,“这种突变显然让XBB.1.5更好地传播。”
不过,专家们也表示,现在很难知道XBB.1.5的增长在多大程度上可归因于病毒的特性或者传播时机。比如,假期期间,人们很可能会进行社交和旅行,而这给任何感染——无论是流感、新冠病毒还是呼吸道合胞病毒——带去更大的蔓延空间。
XBB.1.5会导致更严重疾病吗?
值得注意的是,多数专家预计,XBB.1.5有可能导致更多感染,但他们并不认为这些感染一定会更严重。
负责明尼苏达大学传染病研究和政策中心的奥斯特霍尔姆(Michael Osterholm)指出,更新版加强针应该能够提供一些保护,甚至可以抵抗XBB.1.5这种具有高度免疫逃避能力的毒株。
“他们仍然能提供一定程度的免疫力,可能无法阻止你被感染,但可能对你是否患重病和死亡产生重大影响。”他说,“我们掌握的最新数据显示,对于那些接种了二价疫苗的人来说,他们的死亡风险比那些没有接种的人低三倍。”
CNN指出,快速检测、佩戴口罩、做好室内空气的通风和过滤等等也将继续发挥作用,因此,即使病毒继续进化,人们仍然有很好的方法来保护自己免受感染。
“它似乎没有引起任何更严重的疾病,所以我认为今天流行的情况与一年前截然不同。”奥斯特霍尔姆说。
2022中国农业科学十大进展发布 “基因”成高频词****** 光明网讯(记者宋雅娟)12月16日,2022中国农业农村科技发展高峰论坛暨中国现代农业发展论坛在北京召开。论坛上发布了《2022中国农业科学重大进展》报告,该报告由中国农业科学院科技管理局和农业信息研究所科技情报分析与评估创新团队研制,遴选了10项能够充分代表2021年我国农业科技前沿研究水平、取得重大突破性进展的基础科学研究成果。 10项重大进展具体如下: 1.首次实现异源四倍体野生稻的从头驯化。提出异源四倍体野生稻快速从头驯化的新策略,突破了多倍体野生稻参考基因组绘制、遗传转化以及基因组编辑等技术瓶颈,建立了从头驯化技术体系;证明了异源四倍体野生稻快速从头驯化策略切实可行,对创制高产抗逆新型作物和保障粮食安全具有重要意义。 2.解析水稻品种适应土壤肥力的遗传基础。该研究鉴定到一个水稻氮高效关键基因(OsTCP19),阐明了土壤氮素水平调控水稻分蘖发育过程的分子机理,揭示了水稻对贫瘠土壤适应的遗传基础;为水稻氮高效育种提供了重大关键基因,对保障农业绿色发展具有重要意义。 3.首次绘制黑麦高精细物理图谱。该研究解决了黑麦基因组组装难题,绘制了黑麦高精细物理图谱,解析了黑麦染色体演化机制,鉴定了黑麦籽粒淀粉合成、抽穗期等关键基因;为麦类作物育种源头创新提供了独特基因资源。 4.实现杂交马铃薯基因组设计育种。该研究利用基因组大数据进行育种决策,建立杂交马铃薯基因组设计育种体系,培育了第一代高纯合度自交系和概念性杂交种“优薯1号”;证明了马铃薯杂交种子种植的可行性,推动了马铃薯育种和繁殖方式变革。 5.构建规模最大的猪肠道微生物基因组集。该研究通过对猪500个肠道样本开展深度宏基因组测序,并整合了已有的猪肠道菌群基因组,构建了规模最为宏大的猪肠道微生物基因组集;为猪强抗逆性、高生长速度、高饲料转化相关菌种挖掘和利用提供了重要资源。 6、揭示抗病小体激活植物免疫机制。该研究发现ZAR1抗病小体的钙离子通道功能,建立了钙信号与植物细胞死亡的联系,揭示了一种全新的植物免疫受体作用机制;为人工设计广谱、持久的新型抗病蛋白进而发展绿色农业带来了新启示。 7.揭示超级害虫烟粉虱多食性奥秘。该研究首次发现植物和动物之间存在功能性水平基因转移现象,揭示了烟粉虱“偷盗”寄主植物解毒基因,解析了广泛寄主适应性的分子机制;发现了昆虫多食性的奥秘,为害虫绿色防控提供了全新思路。 8.揭示光信号调控大豆共生结瘤机制。该研究解析了地上光信号与地下共生信号互作调控大豆根瘤发育的机制,证实了光信号对大豆根瘤形成及共生固氮的关键作用;揭示了豆科植物地上地下协同的新机制,为优化农业系统碳-氮平衡提供新策略。 9.首次实现二氧化碳到淀粉的人工合成。该研究设计了化学和酶耦合催化的人工淀粉合成途径,实现了不依赖植物光合作用的二氧化碳到淀粉的人工全合成;使工业化车间制造淀粉成为可能,为实现“双碳”和粮食安全战略提供全新解决思路。 10.揭示脊椎动物水生到陆生的演化遗传机制。该研究鉴定到脊椎动物肺、心脏及四肢等器官的遗传变异与陆生适应有关,系统解析了脊椎动物在早期登陆过程中的遗传演化机制;揭示了脊椎动物从水生到陆生演化的遗传奥秘,为理解脊椎动物水生到陆生的演化提供了关键认知。 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() ![]() 盈彩网投资平台地图 |